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ABSTRACT: We examine the problems of routing
and server assignment in network with random con-
nectivities. In such a network the basic topology is
fixed, but during each time slot and for each of its in-
put gueues, each server (node) is either connected to or
disconnected from each of its input queues with some
probability. During each time slot a server must decide
which of its connected input queues to serve and into
which of its output queues the completed job should
be placed.

For single-input single-output acyclic queueing networks

with random connectivities, we show that the joint
routing/service policy that routes customers along the
least populated path to the destination and serves any
non-empty queue maximumizes throughput. We briefly
discuss some implementation aspects of the proposed
policy, including its robustness in stabilizing the sys-
tem with respect to delayed state information.

1 Introduction

Many types of communications systems exhibit time-
varying connectivity among the various nodes. These
include terrestrial mobile wireless systems, meteor-burst
communications systems, and environments with hard
interference constraints such as a manufacturing floor.
If the individual satellites of a satellite network are al-
lowed to modify their orbits or the scheduling of alim-
ited number of antennae for communicating with their
neighbors, this would also generate connectivities that
vary randomly with time.

Previous works have studied the queueing statistics
for a system with a single server with randomly vary-
ing connectivity to parallel queues [1, 2]. In addition,
[2] examines networks of such nodes under general as-
sumptions about the input and service distributions of
jobs/customers. In [3], the authors use coupling to ex-

amine the problem of routing to parallel finite-length
quecues With random connectivity to a single server to
minimize the system’s loss flow.

In [2] the authors compute the maximum stable in-
put rate to an acyclic system of queues with randomly
varying connectivities by use of a linear program. Af-
ter solving the program, jobs are stochastically routed
at the output of each server to achieve specified av-
erage flows across the various links in the network,
stabilizing it. Unfortunately, the complexity of the
linear program grows exponentially with network size
and requires precise knowledge of the connection prob-
abilities. Thus it may be difficult in cases where the
connection probabilities are unknown and/or varying
to first estimate them and then solve for the optimum
flow rates with which to route customers. It is for
these reasons that we seek a simple, stationary joint
routing/service policy.

In this paper we show that for single-input single-output
acyclic. systems with random link connectivities as il-
lustrated in figure 1, routing along the least populated
path to the destination and serving any non-empty
connected queue stabilizes the system whenever possi-
ble. ‘I'hat is, upon service completion, the server calcu-
lates the number of customers in each path from itself
to the destination and routes the newly completed cus-
tomer along the path containing the fewest jobs. This
routing scheme requires that a node know all of the
queue lengths of the system, but not the connection
probabilities of the links. Thus it responds dynami-
aly to changes in the network connection probabili-
ties.

The rest of this paper is organized as follows.In section
2 we present our model for networks with random con-
nectivities. Section 3 gives the proof that I.}’P routing
stabilizes thesystem. Insection -1 we briefly touch



Figure 1. A network with random connectivities. here
I’; gives the probability that server j is connected to
server¢’s output queue during a given time dlot.

on some implementation details. Section 5 gives some
concluding remarks and discusses our ongoing work.

2 System Model

We consider a single-input single-output acyclic net-
work composed of N nodes (servers); N={1,2,.... N}
as shown in figure 1. lime is slotted, with slots indexed
byte Z,. All jobs enter the system through a single
node, and we define A’ as the number of arrivals to the
system up to and including time t. ‘Jhere is a most
one arrival during any given slot.

Fach server 1 is connected to a set Pi of parents and a
set Cof children by FCFS buffers. The set of all such
buffers is denoted by Q and its cardinality by |Q|. We
refer to the queue between nodesi and j as either one
of node i's childor output queues, or as a parent or
input queue for node j. For generdity we will alow
multiple parallel connections between pairs of servers.

Weassume that a node always has access to (is con-
nected to) each of its output queues. Ior the con-
nections between nodes and their parent queues, we
define the binary connectivity variables {Af;}.If
M/, =1we say that server j is connected to the k*
parallel queue connecting servers i and j during slot ¢,
in which case it can serve customers from that queue.
If M, is O we say that server j isnot connected to
the k" output queue of server i during slot ¢.Thus
the connectivities for the slot are set before the server
makes its decision about which queue to serve. When
there is only one gqueue connecting a pair of servers we
drop the third index.

We can define a one-to-one correspondance between
the triples (i, J,k)thatappearinthe definitions of the
connectivity variables aud the indices of the queuesin
Q. Thus we canwrite P(M, ;. = 1) =F; for some

¢ € {1 ,2,...,]Q|}. Throughout this paper we make

the following assumptions:

A I:The probability of an arrival during any given slot
is A. Yor each triplet (i, j, k), the variables M/, are
taken to be tile states at time¢ of two-state Markov
chains which are independent of each other and the
arival stream. We denote by /77, the probability
that A ;« = 1. The service times of all jobs are equal
to the slot duration, so that if a server chooses to serve
a given customer from a connected input queue, th,
customer will complete service by theend of the time
slot and, if the server is not the destination node for
the network, will be placed in one of the server's output
queUes. The operation of choosing the output queue

into which the customer will be placed is routing.

As the system state we consider the vector Y(t) =
(X(t), C(t)) where X(f) =(Xq(t),¢=1,2,...,]Q]|)
is the vector of queue lengths and C(f) = (C,(t),q =
1,2,.., 1Ql) is the vector of server-queue connectivi-
ties at time t. That is, if Cy(t) = 1 we say that the
server at the tail of queue qis connected to it and has
the option of serving it.

We seek a stationary policy = that bases the rout-
ing and alocation decisions of each server during each
slot on the information in Y (t). We denote the set
of such stationary policies by G. A policy 7 is noth-
ing more than a function #:Ye€ Y(t) = U(t) =
(si(t), ki(t), ri(t)):i= 1,2,..., N)where
(si(t),k;i(t),ri(t)) -4 k,l) indicates that server i serves
its k" parent queue from node j during slot ¢ and
routes the customer to its child queue destined for node
1. If a particular server ¢ does not serve any customer
during a slot then we define s;(t) =k;(t)=":i(t) = 1.
The destination node routes customers to an imaginary
node with id -2.

Remark 2.1 Under the assumptions A 1 and using a
stationary routing/service policy, the system state Y (t)
is a Markov chain.

Definition: We define the system to be stable under

some routing/service policy 7€ G if the queue length
process X (t) is irreducible and has a probability dis-
tribution that converges in the sense that

lim P[X(t)< b] = F(b),Vb €\ (1)
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where F'(+) is a probability distribution on .



Definition 2 : We say that the system is stabilizable if
there exists a policy in G under which it is stable.

3 Stability under LPP Routing

Theorem 3.1 For single-input single-output acyclic net-

works with random conneclivities, the joint routing/
allocation policy that routes customers along the least
populated path to the destination while always scrving
anon-empty mmput queue (if one exists) stabilizes the
system whenever it is stabilizable. When two or more
paths to the destination contain the same number of
jobs, one is chosen at random.

The example in figure 2 illustrates theneed to route
along the shortest path rather than to the shortest out-
put. queue. Under the random connectivity assump-
tions, some servers may be very willing to accept new
jobs while being unable to forward them. These servers
could maintain very short input queues while hoarding
customers in their output queues. Since they maintain
short input queues, parents of these servers would con-
tinue to route customers to them, even though those
customers are collecting and are not leaving the net-
work. By routing customers along the least populated
path to the destination we avoid this problem.
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Figure 2: An example of a hoarding server. Here the
lower server always tries to grab customers from its
input buffer, but they get trapped in its output buffers.

Now consider a single-source, single destination, single
commodity acyclic network with random connectivities
between servers and their input queues. A cutset C'is
defined as a set of links in the network such that every
path from the source to the destination traverses at
least one linkin C'.

[rach cutset €', composed of N links, defines a set
Sc¢: of servers composed of those servers at the tails of

the links in C (i.e. those servers that serve at least
onc link in C). We label these Servers as.Sg, for: =-
12,.... Ns..For a paticular server S¢. connected to
Jg:. links in €, let its connection probabilities to those
links be givenby P(C,i,7),j = 1,2,.. .Jci. Note that
the server Si, may be connected to links not in C as
well.

Iach cutset ' has associated with it a maximal flow
fe, defined as the maximum rate at which customers
can be served from the links in C. This mazimal rate
is purely a function of the connection probabilities and
does not depend on the service or routing disciplines
and is defined as follows:

‘VSC
fe = s, 2
=1
fS‘( -1 - H(l - P(C,1, j)) €)
=1

3.1 Necessity

Lemma 3.1 Let f* = mingee fo where C is the set of
all cutsets. If A > f* then the system is unstable.

Proof : The set C is not empty. Assume A > f*

and let A' be the number of arrivals to the system in
[0, t]. From our assumptions, limy_y., At/t+ A. Since

A > f* we have A > fcr for some C’.Let S'be the
number of potential service opportunities to linksin C’
during [0, t], then

5’t
i T o fer < @

If Nt is the number of customers in the system at time
t
Nf> Al - &t (.5)

and taking the limitas¢ — oo anddividingby ¢ gives:

,\yt 41 qt

liminf =— > liminf =— — liminf = (6)
t—oo ! tooo t—oo ¢

= A-J-*>0 (7)
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3.2 Sufficiency

Lemma 3.2 For A > f*, customers accumulate in the
system ata rateless th anor equal to X — f*. That is:

tliin (# of jobs in system)/t < A — f* (8)

Thus for arrivalrates A < f* the system is retestable.

Let Z be the set of al paths from the source to the des-
tination, with /]’ denoting the number of customers
in the systemat time t who are traversing path Z;.
At each node, customers are routed along the least
populated pathso that in particular a customer arriv-
ing at time ¢ will be routed along the path Z; where
7 = min; Z£.

Remark 3.1 Since custome rs are routed independently
at each node, we do not know on arrival ezactly which
path acustomer will take. For any given customer
however, we can consider running the system until that
customer exits, atwhich time its path is determined.

Remark 3.2 Although Z; may be zero, this does not

mean that there are no customers in any of the queues
comprising Z;, as other paths may sharc links with Z;.

Lemma 3.3 max; Z; 2 oo = 7; =500 V¢

Proof : Suppose that max; Z; — oo and that there
were a Z; such that liminf; Z]‘~ < oo.Under our as-
sumptions, lim;_yoq ZJ‘- exists, so limsup,Z; is also fi-
nite. Note that under I.PP routing, customersare only
routed along the longest path when all path lengths are
equal, and consider the routing decisions of the source
node.

Since lim inf, max; Z! == cc and limsuptZJ‘- < o0, there
must be a time 77 such that for all ¢>7", max; z! >

r . r 1o &4
7% But then we would have lim sup, max; 7} = max; zr,

since 110 customers would be routed alongthe longer
paths after time7”. This contradicts tile assumption
that max; Z, — oc, SO we must have Z; — oo Vj. B

Assume A>F* . For any cutset C, let Y be ther num-
ber of customers who have aready crossed C'.Decfine
the most forward cutset C'y as the cutset for which 1)
all oft he queues defining the cutset are blowing up and
2)lim sup Y(’.f is finite. There must be at least one path

for which the number of customers is growing without
boundby lemma 3.1, and lemma 3.3 shows that that
number of jobs in every path must be increasing with
time. These together with the Markovian assumptions
imply the existance of C'y.

Let NG be the number of customers who have not yet
traversed the links in C'y

N(‘—,/ = A’ — flow across Cin [0,t] 9)

so that the total number of customers in the system at
time tis Né,f + Y(’,f.

Since al queues in 'y are blowing up, there will be
a time 7™*such that for t > 7'* there are always cus-
tomers to serve in each of the queues of C';.Thus for
any non-idling service policy the rate of flow of cus-
tomers across C'y, f¢,, can be calculated from equation
(2). Note that fc, > f~. Now fort >7"we have:

]\7(’7! + }fé'f = NC‘; + (At _ AT‘) ) fC[ (i __/]m) +}/Ct'l
SNE] + (A = A) = JH (L= T%) + ¥,

taking the limit and dividing by ¢ gives:

. Né‘, + Yt
lim ———
t—o0 t

N (A= AT) — fo, (=T + Y
- tllln» f p f

< A-f”

This proves lemma 3.2

Proof of Theorem 3.1: This follows immediately
from Lemmas 3.1 and 3.2. ]

4 Implementation Issues

here we discuss implementation issues associated with
the routing/service policy. We first address the prob-
lem of choosing which queue to serve.

The service policy employed here is to serve any non-
empty queue. Thus each server must poll all of its in-
put queues during every slot to determine which have
customers. We conjecture that the following service
policy has tile same stability region under suitable as-
sumptions. Service policy 3: Assume that at some
point in the past, the server knew the lengths of all
of its input queues. Now, included in the header of
cach customer is the number of jobs that have arrived
to the queue since the last customer was served. The



server then serves the longest connected queue bused
on this information. Thus the server will continueto
serve the current queue until its length drops below the
last reported length of some other connected queue, at
which time the server will switch its attention.

Similarly, we conjecture that systems stability isrobust
withrespect to delaysin the queue length in formation.
Periodically updating the path lengths to the destina-
tion could be done as with the queue lengths in the ser-
vice policy 3, with path lengthinformation attached
to acknowledgements of received packets. This would
greatly decrease the overhead associated with the LPP
routing policy.

5 Conclusion

We have shiown that for acyclic networks withran-
dom connectivities and routing, the policy that max-
imizes throughput is the one that routes customners
along the shortest pathtothe destination at each node
and serves the longest connected queue at eachnode.
We are currently working on the proofs that the service
policy g outlined above and its corresponding routing
policy stabilize the system, as well as extending our
existing proofs to the stationary andergodic case.
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